Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a }}{ }^{*}$ Harald Berger, ${ }^{\text {b }}$
Peter Bubenitschek ${ }^{\text {b }}$ and Henning Hopf ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische
Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
ωR factor $=0.076$
Data-to-parameter ratio $=12.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

10-Phenyl-10-phenylethynyl-9-methylenefluorene

In the title compound [systematic name: 9-(1,3-diphenylprop-2-ynylidene)fluorene], $\mathrm{C}_{28} \mathrm{H}_{18}$, the two halves of the fluorene moiety subtend an angle of 7.84 (9) ${ }^{\circ}$; the interplanar angle about the exocyclic double bond is $12.3(1)^{\circ}$. The packing involves three $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts.

Comment

In connection with our studies of the thermal isomerization of 1,3-hexadien-5-ynes [a summary of such reactions leading to benzene derivatives is presented by Zimmermann (2001)], we needed a sample of 9-(1,3-diphenylprop-2-ynylidene)fluorene, (3), for comparison. The compound was prepared as described in the Experimental section, and characterized by spectroscopic data and the structure determination described here.

The molecule is shown in Fig. 1. Molecular dimensions may be regarded as normal. The two halves of the fluorene moiety subtend an interplanar angle of $7.84(9)^{\circ}$. The orientation of the two phenyl rings is defined by the torsion angles $\mathrm{C} 9-$ $\mathrm{C} 10-\mathrm{C} 19-\mathrm{C} 20 \quad 62.9(2)^{\circ}$ and $\mathrm{C} 9-\mathrm{C} 10 \cdots \mathrm{C} 13-\mathrm{C} 14$ $-22.3(2)^{\circ}$, and the rotation about the $\mathrm{C} 9=\mathrm{C} 10$ bond by the angle of $12.3(1)^{\circ}$ between the planes $\mathrm{C} 1 \mathrm{~A}, \mathrm{C} 8 \mathrm{~A}, \mathrm{C} 9, \mathrm{C} 10$ and C9,C10, C11, C19.

Figure 1
The molecule of the title compound in the crystal structure. Displacement ellipsoids are drawn at the 50% probability level. H -atom radii are arbitrary.

Received 18 February 2004 Accepted 19 February 2004 Online 28 February 2004

The following short but markedly non-linear contacts are observed from various hydrogen atoms to the centroids of the rings $\mathrm{C} 1, \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 2, \mathrm{C} 3, \mathrm{C} 4, \mathrm{C} 4 \mathrm{~A}(\mathrm{Cent1)}$ and $\mathrm{C} 19-24$ (Cent2) ($\mathrm{C}-\mathrm{H}$ normalized to $1.08 \AA$): $\mathrm{H} 24 \cdots$ Cent $1(\mathrm{H} \cdots$ Cent $2.60 \AA$, angle at $\mathrm{H} 147^{\circ}$, operator of Cent $\left.x, 1+y, z\right) ; \mathrm{H} 4 \cdots$ Cent1 $\left(2.71 \AA, 138^{\circ},-x, y-\frac{1}{2}, \frac{1}{2}-z\right)$ and H16 \cdots Cent2 $\left(2.70 \AA, 134^{\circ}\right.$, $1-x, 2-y, 1-z)$. The acceptor of this last contact may alternatively be considered to be the midpoint of the bond C21-C22 (distance $2.67 \AA$, angle 160°).

Experimental

The title compound (3) was prepared in 48% yield by Peterson olefination of phenyl phenylethynyl ketone [1,3-diphenylpropyn-3one, (2)] and 9 -trimethylsilylfluorene (1) in diethyl ether, using n butyllithium as a base (Berger, 2004). Single crystals were obtained by slow cooling of solutions of (3) in pentane.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{28} \mathrm{H}_{18} \\
& M_{r}=354.42 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=14.0901(14) \AA \\
& b=5.8367(8) \AA \\
& c=23.519(2) \AA \\
& \beta=105.383(6)^{\circ} \\
& V=1864.9(4) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.262 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 62 \\
& \quad \text { reflections } \\
& \theta=3.5-10^{\circ} \\
& \mu=0.07 \mathrm{~mm}^{-1} \\
& T=173(2) \mathrm{K} \\
& \text { Prism, yellow } \\
& 0.70 \times 0.40 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

Data collection

Siemens $P 4$ diffractometer

ω scans

Absorption correction: none 3940 measured reflections 3266 independent reflections 1970 reflections with $I>2 \mathrm{~s}(I)$ $R_{\text {int }}=0.026$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.037$
$w R\left(F^{2}\right)=0.076$
$S=0.82$
3266 reflections
253 parameters

H-atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0331 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.12 \mathrm{e}_{\mathrm{m}}{ }^{-3}$
$\Delta \rho_{\max }=0.12 \mathrm{e}^{2} \AA_{\text {min }}=-0.18 \mathrm{e}^{-3}$

Table 1

Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{C} 9-\mathrm{C} 10$	$1.362(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.196(2)$
$\mathrm{C} 1-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 9$	$131.65(15)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 10$	$176.30(18)$
$\mathrm{C} 8-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9$	$131.71(16)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	$176.55(18)$
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$-173.09(15)$	$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 19$	$11.1(2)$
$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$	$12.8(3)$	$\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 19$	$-162.94(15)$

H atoms were included using a riding model with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA ; U(\mathrm{H})$ values were fixed at 1.2 times $U_{\text {eq }}$ of the parent atom.

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: $X S C A N S$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Berger, H. (2004). PhD thesis. Technical University of Braunschweig, Germany.
Fait, J. (1991). Manuals to X-ray program system. Siemens X-ray Analytical Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments, Madison, Wisconsin, USA.
Zimmermann, G. (2001). Eur. J. Org. Chem. pp. 457-471.

